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Abstract 
The severity of dengue is often ascribed to secondary infection with a virus belonging to a serotype 
distinct from that of the primary infection. Severe pathogenicity of DENV might be regulated at the 
genetic level and may be associated with unusual mutational and recombination events which are the two 
major reasons behind the extensive genetic diversity of DENV. The possible emergence of undesired 
genetically novel variant DENV in the near future could create further complexity and subsequent 
complications in the pathogenicity of the disease. This review article is an attempt to understand the 
significance of the extensive genetic diversity of the dengue virus (DENV) in the development of greater 
magnitude of the viral pathogenicity as well as in the severity of recurrent outbreaks in the context of 
changing environment and epidemiology. DENV antigens have been detected from mononuclear cells, 
lymphocytes, Langerhans cells in the skin, neurons, astrocytes, endothelial cells and hepatocytes, heart 
and skeletal muscle. This altered tropism of the dengue virus in humans might indicate the fitness 
strategy of the virus in urban areas since human is the only possible source of viremic vertebrate. 
Remarkably, the RNA virus has developed the ability to recombine with host dsDNA genomes. The 
extraordinary abilities of RNA virus like DENV may unlock a new vista in dengue research, which 
encompasses the relevant proposition of a momentous plausibility of crucial genetic exchange between 
DENV (+) ssRNA genome and dsDNA of the human host and thereby the possible emergence of 
genetically novel DENV variants associated with altered pathogenicity. 
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1. Introduction 
The study of arthropod-borne viruses like Dengue virus (DENV) is relevant in the context of 
public health because they generally impose an enormous disease burden on humans. The 
plasticity of the genome of RNA virus together with the extraordinary dispersal potential of 
arthropod vectors is of a keen interest in the study of arboviral diseases like Dengue [1-3]. 
Dengue fever was initially mentioned as “water poison” linked with flying insects in a Chinese 
Medical Encyclopaedia in 992 from Jin Dynasty (265-420 AD). The word “dengue” has been 
acquired from Swahili phrase Ka-dinga pepo, meaning “cramp-like seizure” [4]. Dengue virus 
(DENV) is a flavivirus and belongs to the family Flaviviridae. The Dengue virus has four 
antigenically distinct serotypes (DEN 1, 2, 3, and 4) [1]. The first clinically identified dengue 
epidemics happened almost simultaneously in Asia, Africa, and North America in the 1780s 
[4]. Dengue fever has re-emerged as a major public health challenge worldwide; with 2.5 
billion people at the risk of infection, more than 100 million cases and 25,000 deaths being 
reported annually [5].The WHO estimates that almost 2.5 billion people in the world population 
are at the risk of Dengue infection. This disease is estimated to affect 50-100 million 
individuals each year in the tropical and subtropical regions. Of these cases, 500,000 develop 
into severe forms of the disease such as Dengue Haemorrhagic Fever (DHF) and Dengue 
Shock Syndrome (DSS). Dengue is gradually becoming a global disease. Compared to nine 
reporting countries in the 1950s, today the geographic distribution of Dengue includes more 
than 100 countries worldwide. Dengue/DHF is a significant public health problem in India [1]. 
Dengue has been considered predominantly an urban disease. Presently, however, rural 
districts have also been affected by this virus. The greater genetic diversity in any virus 
population provides considerable opportunity to increase viral fitness in a population. RNA 
viruses have the potential to adapt rapidly via large population size, shorter replication times, 
and increased mutation rates [1]. This review article is an attempt to understand the significance 
of the extensive genetic diversity of the dengue virus (DENV) in the development of greater 
magnitude of the viral pathogenicity as well as in the severity of recurrent outbreaks in the 
context of changing environment and epidemiology.
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2. Morphology of Dengue Virus 
The virion of dengue virus is spherical and 40-50 nm in 
diameter [6]. It consists of a nucleocapsid which is about 30 nm 
in diameter enclosed in a lipid envelop. The lipid envelope 
contains a lipid bilayer and an envelope protein (~51000-
59000 Daltons) that facilitates attachment, fusion and 
penetration. A non-glycosylated internal matrix protein (8500 
Daltons) is also present in the lipid envelope [6]. Researches 
demonstrated that mature dengue virion is characterized by a 
comparatively smooth surface and 180 copies of envelope 
protein forming an icosahedral scaffold [7].  
 
3. Genome of Dengue virus 
The DENV genome is composed of a single-stranded, 
positive-sense RNA molecule ~10.7 kb in length. It 
accommodates a single translated open reading frame (ORF) 
which encodes a precursor polypeptide (~3390 amino acids) 
that is further processed catalytically by DENV and host 
proteases into ten viral proteins: three structural proteins (C, 
capsid; prM/M, precursor of membrane; E, envelope) which 
are encoded at the 5’ end and seven non-structural proteins 
(NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) which are 
encoded at the 3’ end [6] (FIGURE 1) (Table 1). The ORF of 
dengue virus is flanked at its 5’ terminus by an untranslated 
region (UTR) which is about 100 nucleotides in length and a 
longer UTR at its 3’ terminus which is about 500 nucleotides 
in length. The 5’ terminus of DENV genome contains a type I 
cap and there is no polyadenylation at 3’ terminus [8]. 

Researches also showed the existence of several 
multifunctional non-structural proteins [6]. The E protein is the 
most important among the three structural proteins in regard to 
virus infectivity. It is glycosylated at two specific sites which 
are Asn-67 and Asn-153 that is responsible for DENV 
attachments to receptors on host cells and fusion with host cell 
membrane [6].  
 

Table 1: List of Non-Structural Proteins of DENV and their 
functions. 

 

Non Structural 
Proteins (NS-Proteins) 

Functions References 

NS1 
Functions in viral RNA 

replication complex, soluble 
complement-fixing antigen 

6, 200 

NS2A 
Constituent of RNA 
replication complex. 

NS2B NS3 protease cofactor 

NS3 
Serine protease, RNA 

helicase, RTPase/NTPase. 

NS4A 
Induces membrane 

alterations required for 
virus replication. 

NS4B 
Blocks IFN α/β-induced 

signal transduction. 

NS5 
RNA-dependent RNA 

polymerase (RdRp) and 
Methyltransferase (MTase) 

 

 
 

4. Significance of 5’ and 3’ end of DENV RNA genome 
The specific structures in 5’ and 3’end of DENV genome have 
a profound role in RNA synthesis [9]. The 5’-UTR of dengue 
virus are 95-101 nucleotides in length which contain two RNA 
domains that have a distinct role during viral RNA synthesis 
[9]. The first domain comprised of ~70 nucleotides is believed 
to fold into a large stem-loop (SLA) structure. DENV SLA is a 
Y shaped structure and is thought to function as the promoter 
for viral RNA directed RNA polymerase (RdRp) [9-14]. In 
addition, three helical regions (S1, S2, and S3) separated by 
bulges and highly reactive single stranded regions associated 
with side stem loop and a top loop are present. The second 
domain of DENV 5’-UTR is thought to produce a short stem-
loop (SLB) which possess important sequence for long range 
RNA-RNA interaction and genome replication [14]. Inside the 
coding region downstream of the translation initiation codon, 
AUG, a stable hairpin (cHP) is also found in DENV genome 
which is necessary for viral RNA replication [15]. The 3’-UTR 
of DENV is approximately 450 nucleotides in length and can 
be divided into three specific domains. Domain I is the most 
variable region and is located immediately after the stop codon 
[16]. This domain exhibits substantial size distribution between 
the viral serotypes which usually ranging from more than 120 
nucleotides to less than 50 nucleotides [17-22]. Domain II 
involves a dumbbell (DB) structure which contains tandemly 
duplicated nucleotides [17, 20, 22]. These specific domain 

structures generally function as enhancers of the viral 
processes [16, 23-26]. Domain III is the most conserved region in 
the 3’-UTR containing CS1 element which contains a virus 
cyclization sequence that is complementary to a specific 
sequence exists in 5’ end of the virus genome and involved in 
long range RNA-RNA interaction between the virus genome [9, 

14]. The terminal 3’ structure bears a short stem loop (sHP) 
which is 14 nucleotides in length, followed by a large stem 
loop that is 79 nucleotides in length. These two adjacent 
structures containing a total of 93 nucleotides are collectively 
referred as 3’SL, which is critical for flavivirus replication [9, 

27, 28].  
 
5. Different Serotypes and their genotypes of Dengue virus: 
The Dengue virus occurs mainly as four antigenically distinct 
serotypes (DEN 1, 2, 3, and 4) [1, 29]. All the four serotypes are 
found circulating in India. There is genetic variation within 
each serotype in the form of phylogenetically distinct subtypes 
or genotypes. South-east Asia harbors the greatest genetic 
diversity of dengue virus, suggesting it acts as a viral ‘source’ 
population [1, 30]. Recently, a new serotype of dengue virus 
DEN-5 has been detected from a hospitalized 37 years old 
farmer in Sarawak state of Malaysia. Researchers 
demonstrated that this new serotype of dengue virus is 
genetically similar to other four dengue serotypes, thus thought 
to be originated from a common predecessor [31]. (Table. 2) 
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Table 2: Different DENV Serotypes and their distribution. 
 

Dengue Virus 
Serotypes 

Genotypes Distribution References 

DEN-1 

Genotype I Hawaii in the 1940s (the prototype strains), Japan, China, Southeast Asia and Taiwan. 

6, 201 
Genotype II Thailand in the 1950s and 1960s. 
Genotype III Sylvatic origin in Malaysia. 
Genotype IV Nauru, Australia, Philippines and Indonesia. 
Genotype V The America, Africa, Southeast Asia. 

DEN-2 

American 
Formerly known as subtype V. Encountered in Latin America, old strains from India 

(1957), the Caribbean, and the Pacific islands between 1950 and 1970s. 

6, 202 

American/Asian 
Formerly known as subtype III. Encountered in China, Thailand, Vietnam and Latin 

America. 
Asian I Thailand, Myanmar and Malaysia. 

Asian II 
Formerly known as subtype I and II. Encountered in China, the Philippines, Sri Lanka, 

Taiwan and Vietnam. It includes the New Guinea C prototype strain. 

Cosmopolitan 
Formerly known as genotype IV. Widely distributed including Australia, the Pacific 

islands, Southeast Asia, the Indian subcontinent, Indian Ocean islands, Middle East, and 
both East and West Africa. 

Sylvatic Found and isolated from non-human primates in West Africa and Malaysia. 

DEN-3 

Genotype I 
Indonesia, Malaysia, Thailand, Burma, Vietnam, the Philippines and the South Pacific 

islands (French Polynesia, 
Fiji and New Caledonia). Includes the H87 prototype strain. 

6, 203 Genotype II Thailand, Vietnam and Bangladesh. 
Genotype III Singapore, Indonesia, South Pacific islands, Sri Lanka, India, Africa and Samoa. 
Genotype IV Puerto Rico and French Polynesia (Tahiti). 

DEN-4 

Genotype I Thailand, Malaysia, the Philippines and Sri Lanka. It includes the H241 prototype strain. 

6, 38, 204 
Genotype II 

Indonesia, Malaysia, Tahiti, the Caribbean islands (Puerto Rico and Dominica) and the 
Americas. 

Genotype III Thailand (Bangkok, specifically). 
Sylvatic Found and isolated from non-human primates in Malaysia. 

DEN-5 Not Reported Sarawak state of Malaysia 31 
 

6. Major Factors behind DENV Genetic Diversity 
A. Mutation 
The RNA virus population generally associated with high 
mutation rates and contain genetic diversity [32]. Studies 
indicated that mutations are not biased toward a specific 
nucleotide and the mutation frequency of each nucleotide is 
usually proportional to its occurrence [33]. Point mutations like 
transitions (A to G, G to A, C to T or T to C) are found most 

prevalently in the dengue genome (Table. 3). Mutations are 
also repeatedly observed in the third codon position. 
Moreover, it has also been observed that the rare variants like 
deletions and early termination STOP mutations found at low 
frequencies in the dengue genome during human infections [33]. 
Variations in the non-structural proteins have also been found 
in association with increasing dengue severity [34-39].  

 

Table 3: Types of Mutations majorly found in DENV. 
 

Genomic Components Types of Mutations References 

Structural Genes 
C gene Nucleotide Substitution 

33, 65, 132, 135, 201 

prM gene Nucleotide substitution 
E gene Nucleotide substitution, Deletion 

Nonstructural Genes 

NS1 Nucleotide Substitution 
NS2A Nucleotide Substitution 
NS2B Nucleotide Substitution 
NS3 Nucleotide Substitution 

NS4A Nucleotide Substitution 
NS4B Nucleotide Substitution 
NS5 Nucleotide Substitution, Deletion, Frameshift 

Cis-regulatory region 3’-UTR Transversion, Transition, Deletion, Insertion 
 

B. Recombination 
Recombination is a momentous impetus behind genomic 
diversity [40-44]. Recombination events are commonly found in 
RNA virus, including DENV [45]. Dengue infection with two 
different strains which is a prerequisite for DENV 
recombination has been demonstrated in both human and 
mosquitoes [46-50]. Researchers have demonstrated that 
recombination can occur in different genetically diverse 
DENV strains [45, 51-57]. Two major mechanisms have been 
considered for viral RNA recombination. First one is non-
replicative breakage and re-joining and second is replicative 
template switching [42, 58]. Recombination breakpoint for the 

(+) ssRNA virus have been found in the non-structural protein 
and also in the structural protein encoding regions [59, 60]. 
Researchers reported that three recombination zones in DENV 
located within the sequences prM-E junction, NS1 and NS3 
genes [61]. Interestingly, it has been reported that DENV RNA 
dependent RNA polymerase (RdRp) exhibits a significant 
conformational flexibility during the transition from initiation 
to elongation [62] which might favour the recombination event 
in virus [61]. Researchers reiterated that RNA recombination 
events like homologous recombination (at sites with exact 
sequence match), aberrant homologous recombination 
(requires sequence homology) and non-homologous 
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recombination (independent of sequence homology) also 
occurs in RNA virus [63, 64]. 
 
7. Characteristics of Genomic variations leading to the 
intriguing DENV pathogenesis 
Phylogenetic studies indicated that genetic subtypes of the 
DENV differ (up to 12 %) in the nucleotide sequence of E-
gene [65, 66]. Researchers demonstrated that several structural 
differences are present between two DEN-2 genotypes (such 
as, the Southeast Asian genotype with DF and DHF and the 
American genotype with only DF) which results in distinct 
human clinical presentation [65]. There are six amino acid 
change differences are encountered, including the pre-
membrane protein (prM; amino acid 28 GluLys), the 
envelope glycoprotein (E; amino acid 390 AsnAsp), the 
non-structural protein 4B (NS4B; amino acid 17 SerHis) 
and NS5 (amino acid 645 AsnAsp, 676 SerArg and 800 
LysSer). Moreover, the comparative analysis between the 
American strain and the Thai strains discovered a plausible 
correlation between the amino acid sequence of the subtypes 
of DEN-2 strain and the clinical severity of the patients from 
whom the virus strains were collected [65]. From all DSS cases, 
three amino acid changes were found in subtype I of DEN-2 
strain: DG change at position 278 in NS1; ND change at 
139 in NS2A; MI change at 13 in NS3. From all DF cases, 
five amino acid changes were found in subtype III of DEN-2 
strain IR change at 16 and TA at 81 in prM; IM at 136 
in NS2A; AT at 118 in NS3; and TM at 337 in NS5 [65].  
 
8. Dengue and RNAi 
In insects, RNA interference (RNAi) mechanism is considered 
as a major antiviral defence mechanism [67-73]. In order to 
transmit into a suitable host, arbovirus like dengue must 
escape this anti-viral defence [67, 74]. The DENV 3’ UTR RNA 
structures are thought to be linked with the generation of 
subgenomic flavivirus RNA (sfRNA) [75]. Sf RNA are 
produced by the incomplete degradation of viral genome by 
cellular ribonuclease XRN1 which stalled at pseudoknot 
structures at the 3’-UTR [75-77]. Interestingly, it is shown that 
sfRNA also inhibit RNAi pathways in mosquitoes [78].  
 
9. Discussion 
The increased incidence of dengue has been observed 
throughout the world since last three decades [1, 79, 80]. Disease 
severity of dengue is often ascribed to secondary infection 
with a virus belonging to a serotype other than that of the 
primary infection. In this context, evolution of the virus is also 
considered as a major contributing factor behind the enhanced 
dengue epidemics [81, 82]. Multi-serotype infection and 
antigenicity of DENV might have profound effect in 
augmented dengue epidemics [81, 83]. Mutation rates in viruses 
with RNA genomes can be six orders of magnitude greater 
than the viruses with DNA genomes as no proof reading 
enzymes are available for RNA dependent RNA polymerases, 
thus exhibiting error frequencies nearly equal to 10-4 [1, 84]. 
High mutation rate associated with RNA polymerase 
introduces approximately one error per genome during each 
round of viral replication [1, 85]. According to the “Muller’s 
ratchet” theory, a high rate of mutation in RNA virus results 
the accretion of deleterious non-synonymous mutations and 
such deleterious mutations are then removed by purifying 
selection [86. 87]. Researchers reiterated that natural 
recombinants of dengue virus (DENV) carry multiple 

recombination events [41]. Analysis of the nucleotide sequences 
from the DEN-1 and DEN-2 serotypes revealed that a 
networked evolution has occurred in DENV progeny, 
indicating the strong probability of occurrence of genetic 
recombination [88]. The inter-virus genetic recombination 
occurs successfully which could lead to form new virus 
variants [1, 89]. Interestingly, intra-serotype homologous 
recombination has also been identified in the non-structural 
gene region [90]. Surprisingly, studies demonstrated that the 
high evolving organisms like virus, bacteria exhibit intra-
codon recombination event [91, 92], which is a form of genetic 
recombination where the nucleotide triplets of the same codon 
engage in sequence exchange via significant breakpoints 
within the codon [81]. The different serotypes of DENV also 
exhibit intra-codon recombination event. This indicates that 
the genetic recombination event within the codon level has a 
significant effect to maintain the extensive purifying selection 
[81]. Studies stated that the viral surface protein of arbovirus is 
also subjected to strong purifying selection [93].  
The DENV subtypes or genotypes differ in both fitness and 
virulence which have poignant significance in the viral 
population structure [94]. The abrupt change in genetic 
composition of one genotype of DENV causes the 
displacement of another genotype in a specific population [38, 

39, 95-97]. This is markedly evident from the phenomenon where 
replacement of low virulence American genotype of DEN-2 
virus by high virulence Southeast Asian genotype of the DEN-
2 virus. This has been found in Latin America [98-100]. This 
replacement might be the result of immune mediated natural 
selection in which an altered genetic composition in one 
genotype helped it to evade the cross-immunity generated by 
the other genotype [101]. The four serotypes of dengue virus 
have been evolved in non-human primate reservoirs and then 
leaped over to the humans because of clustering of sylvatic 
strains with the human strains as a result of increased 
anthropogenic activity [102] (FIGURE 2). Experimental 
findings suggest that there is no significant adaptive barrier 
exists for the emergence of sylvatic DENV in human 
populations, possibly indicating the DENV might be an 
“opportunistic virus” and has a significant potentiality to infect 
different primates [102]. Thus, the co-circulation of different 
dengue serotypes and increased anthropogenic activity 
enhance the possibility of genetic changes through 
recombination and thereby increases a significant plausibility 
for availability of genetically diverse viral strains. These above 
apprehensions might be considered as potential reasons behind 
the emergence of a new variant serotype, DEN-5 [31]. Studies 
suggested that South-east Asia, possibly harbours DENV 
“source” population [1, 30]. Thus the finding of a new serotype 
DEN-5 from Sarawak state of Malaysia of South East Asia [31] 
further increases the importance of thorough study on the 
emergence of new virus strains and genotypes or subtypes. In 
this context, it could also be mentioned that global change of 
climate might become an important factor behind the sylvatic 
DENV circulation through the territorial expansion of the 
dengue vectors [103]. Although, DENV infection is mostly 
dependent on the considerable interaction of vector mosquito 
and human host [103] but in near future there is a possibility that 
the newly emerged serotypes such as DEN-5 could result a 
severe dengue outbreak in human population with an altered 
pathogenicity which could further complicate the disease 
situation in the changing environment.  
 



 

~ 33 ~ 

International Journal of Fauna and Biological Studies 

 
 
Aedes aegypti has been considered to be the principal vector of 
dengue virus in the urban transmission cycle while Aedes 
albopictus serves as a secondary vector or a maintenance 
vector [104, 105]. It has been reported that these mosquito vectors 
has aggressively invaded different ecological areas [106-109]. The 
global expansion of their distribution and introduction to new 
continents has been attributed by international trade routes 
through shipping and increased anthropogenic activities [110-

112]. The persistence and the maintenance of the DENV in the 
nature during inter-epidemic period are results from 
transovarial transmission of dengue virus by these vector 
mosquitoes [1]. The outbreak of dengue in India was generally 
associated with Aedes aegypti but interestingly, in Kerala 
state Aedes albopictus has identified as the primary vector for 
dengue [105]. Thus studying the role of two above mentioned 
Aedes mosquitoes in virus transmission may further elevate 
our understanding about the vector-virus dynamics in the 
dengue transmission cycle occurring in natural condition [61]. 
Aedes albopictus has been included within the hundred most 
dangerous species in the global invasive species database [1, 

113]. The genome of this mosquito possesses extensive 
repetitive sequence and significant groups of transposable 
elements. It has found that ~68% of genome representing the 
repetitive sequence [114]. This high repetitive DNA is 
associated with large genome size and the length of the entire 
genome is ~40% more than Aedes aegypti. This large genome 
size with extensive repetitive sequence confers a prominent 
status of “Invasive Species” to Aedes albopictus [114]. The 
RNA sequences related to flavivirus has found integrated in 
dsDNA genome of these Aedes mosquitoes which indicate the 
possible DNA synthesis from viral RNA by endogenous 
reverse transcriptase activity [115-117]. This in turn strongly 
supports the fact that flavivirus has the potential ability to 
recombine with the mosquito DNA [118, 119]. A relative complex 
interaction persists between the mosquito’s nucleic acid 
metabolism and DENV replication which might facilitate the 
generation of recombinant virus [61]. Interestingly, research 
identified that DENV genome harbours a large number of 
positions which exhibit a high degree of intra host viral 
diversity [120]. There are seven positions in DENV genome that 
shows this high degree of plasticity, which are: two in the E 
gene, one in the NS1 gene, one in the NS3 gene, one in the 2k 
peptide at the C terminus of the NS4A gene and two in the 
NS5 gene. The changes of intra-host genetic diversity during 
the human infection were encountered more extensively in the 
NS1, NS2A and E-gene. However, in Aedes aegypti, the 
changes were located in prM, E, NS1, NS3, NS4A (2k 
peptide) and NS5 genes whereas, in Aedes albopictus, the 
changes were found in E, NS1, NS4A (2k peptide) and NS5 

genes. These differences indicate that the DENV which 
transmitted through an Aedes aegypti-human cycle may 
produce genetically different virus from those transmitted 
through Aedes albopictus-human cycle [120].Thus, it could be 
fair to mention that the unique genomic properties and the 
ecological plasticity of both the Aedes mosquitoes confer a 
profound effect on the dengue virus global distribution and 
maintenance of extensive virus genetic diversity in natural 
condition. This might be associated with unexpected dengue 
outbreaks and disease complications.  
The other members of the Flaviviridae family like WNV and 
JEV require replication before transmission. Animal hosts 
such as pigs and birds play an important role in the 
maintenance and amplification of the virus. These virus 
survive by virtue of alternation between vertebrate and 
invertebrate hosts in a “cycle” where man gets the infection 
tangentially on accidental intrusion in this pathway [121]. 
DENV infection requires an invertebrate host (mosquito 
vector) and a primate host [102, 122]. Interestingly, the flavivirus 
like WNV, JEV increase their within-host genetic diversity 
through replication [123]. Albeit, it has been reported that 
significant purifying selection pressure is also acting on the 
JEV genome [124, 125] but in vitro studies indicated that a single 
alternate passage in vertebrate cell culture after sequential 
passage in mosquito cell culture decrease genetic diversity of 
the flavivirus [123, 126]. Thus, the infection caused by these 
viruses to human “dead end” host might result in a 
conspicuous reduction of the chances of the availability of 
naturally fit genetically variant virus strains. Moreover, the 
host alteration reduces virus fitness in comparison to single 
host viruses [127-131]. The essence of dengue virus evolution 
relies on the fact that, the mutations (deletions and insertions) 
in the variable regions of 3'-UTR of the DENV genome [54, 132-

135] and duplication of a RNA structure at 3'-UTR have a 
profound role in rapid host specific adaptation without 
significantly reducing virus fitness [78]. In addition, the NS 
genes are also thought to have an important role in viral fitness 
[34]. It is demonstrated that a higher recombination rate per 
nucleotide probably plays a major role in the more effective 
purifying selection observed in RNA viruses [93]. Thus, the 
ability of rapid host adaptation of DENV coupled with genetic 
recombination events may facilitate the extensive genetic 
diversity which is then might subjected to purifying selection 
and thereby may produce naturally fit DENV variant strains. 
Additionally, the significant role of the cis-regulatory region, 
3’-UTR of the DENV RNA genome in facilitating the 
inhibition of RNA interference pathway in host [78] might 
enlighten and explain the possible strategy of the virus to 
bypass or avoid the host developed mechanisms against the 
virus.  
The different serotypes of dengue virus also transmitted 
between non-human primates and mosquitoes in tropical Asia 
and West Africa. The presence of this silent zoonotic 
transmission cycle of DENV could explain about the selection 
of dengue virus variants with altered host range [136]. 
Interestingly, a large proportion of asymptomatic dengue cases 
are found in association with symptomatic dengue cases in a 
group of affected individuals in a population [137]. It has been 
also reported that mosquitoes might have the possibility of 
getting the infection from the individuals who are infected by 
dengue virus but showed no clinical symptoms [138]. This may 
add a new dimension in the dengue epidemiology, where some 
human individuals with asymptomatic dengue infection might 
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play a potential role as a source in the dissemination of 
infection [139, 140]. This phenomenon could also facilitate the 
natural maintenance of dengue virus in the urban areas. 
However, we are hesitant to refer this human source as a 
“reservoir host” of dengue virus in urban areas, but may be 
interpreted as a silent carrier. 
Dengue virus shares similarity with the primitive mosquito-
borne encephalitis viruses. Interestingly, this virus has 
significantly evolved a notable biological feature, called 
“lymphotropism” which segregates them from their more 
primitive neurotropic ancestors [136]. The virus usually 
damaged the primate monocyte or macrophage as a principal 
target cell for replication [141]. Experiments have been revealed 
that there is a wide range of cellular tropism found in DENV. 
DENV antigens have been detected from mononuclear cells, 
lymphocytes, Langerhans cells in the skin, neurons, astrocytes, 
endothelial cells and hepatocytes, heart and skeletal muscle 
[142, 143-156]. Researchers reiterated that the C-protein of DENV 
interacts with the multifunctional host protein Nucleolin 
(NCL) which facilitates the viral morphogenesis [157]. This 
altered tropism of dengue virus in humans might indicate the 
fitness strategy of the virus in urban areas since human is the 
only possible source of viremic vertebrate. This possibly 
ensured the sustained transmission of dengue virus in urban 
situations. The “lymphotropism” phenomenon also provides 
an opportunity for the survival, maintenance and spread of 
DENV in urban areas in the absence of any non-human 
primate reservoir. Moreover, this extraordinary capacity of 
DENV to replicate in human tissues to high titer level 
indicates the possibility of emergence of potentially variant 
strains with altered tropism which could significantly change 
the disease expression in the host. Therefore, in the context of 
flavivirus evolution, there is a high possibility that flavivirus 
like dengue is able to convert itself into a much threatening 
pathogen by genetic changes which can efficiently capable of 
causing encephalitis [136], encephalopathy [158] and other 
neurological complexities. This can be supported by the 
example which involves the detection of DEN-4 in brain cells 
and in cerebro-spinal fluid (CSF) of a patient with encephalitis 
[159, 160]. Interestingly, various neurological manifestations 
corresponding with DEN-2 and DEN-3 infections have also 
been found [158]. Thus the possible altered expression of 
dengue and the burgeoning disease severity might further 
complicate the existing dengue infection situation in the near 
future and may create a situation of possible confusion in the 
disease recognition as well. 
Dengue infection with two different strains which is a 
prerequisite for DENV recombination has been already 
demonstrated in human [46]. Interestingly, the RNA virus has 
developed the ability to recombine with the genome of 
unrelated group of DNA viruses [161]. This further increases the 
possibility of emergence of entirely new virus strains or 
subtypes in the environment. Moreover, remarkably 
researchers reiterated that the RNA virus has also developed 
the ability to recombine with host dsDNA genomes [162]. 
Studies indicated that transposon mediated exchanges and the 
group II intron retro-homing mechanism could facilitate the 
formation of recombinant virus containing RNA-DNA hybrid 
genome [161, 163, 164]. The host cell might also use similar related 
host cell based molecular mechanism to facilitate the 
formation of recombinant virus. Thus, these extraordinary 
abilities of RNA virus like DENV may unlock a new vista in 
dengue research, which encompasses a relevant proposition of 

a momentous plausibility of crucial genetic exchange between 
DENV (+) ssRNA genome and dsDNA of the human host. 
However, any purifying selection within individual hosts may 
be relatively weak [165], but with the passage of time natural 
selection might favour the emergence of novel genetically 
diverse DENV variants, resulted from the crucial genetic 
exchange between dengue virus genome and the human 
genome. 
Interestingly, it has been demonstrated that the dengue virus 
can be capable of causing apoptotic cell death in both, in vitro 
and in vivo conditions [166]. The crucial induction of 
programmed cell death by DENV may contribute to severe 
dengue pathogenesis [142]. Studies demonstrated the presence 
of apoptotic cells in liver, brain, intestinal and lung tissues 
which were found in the autopsy examination of fatal 
DHF/DSS cases [167]. It was also indicated that in the 
neuroblastoma cells of mice, the notable aggregation of viral 
proteins in the ER membrane might responsible for the ER 
stress, which then initiates the apoptotic pathway [168]. The 
major aspect of DHF/DSS is the induction of apoptosis event 
in the endothelial cells, which might be caused from DENV-
NS1 activating complement system [169, 170]. The apoptosis 
event in the hepatocytes might be a possible reason of liver 
damage observed in few dengue infected patients [171, 172]. 
Studies revealed that megakaryopoiesis could be actively 
inhibited by DEN-2 virus in in vitro condition and is 
associated with programmed cell death of initial 
megakaryocyte progenitor subpopulation which may be a 
significant cause of thrombocytopenia during dengue [173]. 
Moreover, the apoptosis in the dendritic cells could disable 
innate immune response or could facilitate the viral escape 
from the immune surveillance which ultimately results in 
severe dengue pathogenicity [142]. The severity of dengue 
infection also results in the undesired destruction of 
neighboring cells (Bystander effect) and thereby leads to the 
weakening of the host immune response [174, 175]. Moreover, 
patient with acute dengue infection has been found with viral 
myositis, which then leads to the development of 
rhabdomyolysis in the patient [176]. These instances of severe 
pathogenicity of DENV might be regulated at the genetic level 
of the virus and may be associated with unusual mutational 
and recombination events.  
The extensive genetically diverse RNA virus population like 
DENV thought to consist of a group of closely related non-
identical genomes which are referred as viral quasispecies [177-

182]. Viral quasispecies might play an important role in the 
development of the chronic disease [183]. These quasispecies 
might evolve as a probable result of competition and selection 
[184]. The accretion of random mutations resulting from the 
high mutation rate in the RNA genome of DENV might cause 
the formation of DENV quasispecies [183]. Quasispecies of a 
flavivirus like the human hepatitis C virus successfully escape 
from the host immune response when the host immune system 
has failed to reduce the genetic diversity of the virus [185]. In 
addition, they could also escape from the pressure of drug 
treatment [183]. The viral quasispecies contain the genomes 
with most fitness that is encompassed by a mutant virus 
spectrum [184]. Moreover, the diverse virus population involves 
“low-fitness intact viruses” which might show higher fitness in 
dissimilar environments. The co-infection in association of 
“high fitness viruses” in disparate environments might be the 
possible reason in favour of the survival of those “low-fitness 
intact virus” [183, 186]. Remarkably, studies indicated that RNA 
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virus like DENV could carry a memory genome in the virus 
population at the intra-host and inter-host level. The virus 
population in the form of quasispecies might also carry a 
molecular memory genome [183]. The memory genome of 
DENV could result the different cell tropism of different 
DENV [187]. The co-infection of different DENV strains or 
genotypes might be considered as the reason behind the 
formation of viral quasispecies. The DENV population might 
contain different small minor populations and these 
populations might be maintained through infections in both 
mosquitoes and humans. DENV population may be successful 
to carry the unique genome and genomic combinations which 
might in turn result in altered cell tropism [183]. Therefore, the 
uniqueness of DENV genomic constituents and its 
unconventional interaction with the host genome could further 
complicate the pathogenicity and severity of the disease.  
The evolution of the mosquito borne virus involves the genetic 
bottleneck and extinction events [188]. The genetic bottleneck 
causes the emergence of new virus strains and variants from 
limited members amongst the majority of co-circulating virus 
in a particular region. The reintroduction of various DENV 
subtypes in a particular area has been reported [189, 190]. The 
intricate mutational events in the virus in association of 
interaction with the host cells may confer an ability of a 
notable resistance to the positive sense strand RNA virus like 
dengue against its extinction [184]. Albeit the vertical evolution 
through random mutation has been considered as the principal 
factor in the evolution of RNA virus like DENV, but the 
admixture of genetic constituents between individuals of 
different strains of the dengue also directs the mode of DENV 
evolution horizontally by facilitating horizontal evolution [191]. 
The unique capability of DENV in the maintenance of 
extensive genetic diversity by high mutation rates, structural 
modification of cis-regulatory region of its RNA genome and 
unusual genetic exchange between its different strains, related 
and unrelated group of viruses and host ds DNA genome in 
artificial and natural condition is a possible indication of rapid 
evolutionary adaptation of the DENV in the changing 
environment.Thus, these unique genetic strategies might 
indicate the prospective direction of DENV evolution, which is 
associated with altered disease expression in the changing 
climate.  
Vaccination might produce an ambiance where reasonably low 
transmission of natural DENV could be found [34]. The World 
Health Organization (WHO) suggested that the development 
of tetravalent vaccine is the most effective approach for 
prevention of dengue [192]. The most important feature of an 
effective dengue vaccine must include its ability to provide 
protection against all dengue virus in different dengue endemic 
geographical regions [193]. The live tetravalent vaccine 
development has been initiated in Bangkok, Thailand in late 
1970 [194]. In addition to this, other significant approaches like 
recombinant vaccines have also been developed [195]. Inspite of 
extensive efforts, a safe and effective dengue candidate 
vaccine was not developed [192]. However, a world renowned 
multinational pharmaceutical company, Sanofi Pasteur has 
recently developed the first dengue vaccine Dengvaxia™, 
which has been approved by Mexico [196]. Studies indicated 
that recombination events either between strains which are 
presented in multivalent vaccine or between an attenuated 
vaccine strain and wild type strain might cause the unwanted 
emergence of new variant virus with unusual properties [197-

199]. Thus, in this changing epidemiological situation, the 

effectiveness of a vaccine in lowering the transmission of 
several naturally developing genetically variant DENV in 
different dengue endemic geographical regions is still a matter 
of conjecture.  
 
10. Conclusion 
The evolutionary arms race between host and virus has always 
played a pivotal role in shaping the virus evolution. The 
mutational and unique recombination events might be a 
principal reason behind their extensive genetic diversity. The 
mosquito vector provides an environment where changes of 
viral genotype occur and applies selection pressure on the 
different viral phenotypes. Hence, vectors have a great chance 
to influence the evolution of such viruses. An inclusive 
understanding of host-virus interaction is also needed, to fully 
assess the factors that regulate the potential for host shifts and 
geographic expansions. Additionally, rapidly increasing size of 
the human population and globalization may allow natural 
selection to play an even more important role in viral 
evolution, especially, arthropod-borne viruses like dengue 
virus. Therefore a sustained active surveillance, molecular 
sequencing studies and phylogenetic analysis of different 
DENV isolates are required to understand the evolutionary 
trend of dengue virus with reference to genetic diversity in the 
changing climate.  
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