Fruiting phenology and avian frugivory on Lantana camara in a mixed dry deciduous forest, Western Ghats, Tamilnadu, India

R Aruna and P Balasubramanian

Abstract
This paper describes the fruited phenology and avian frugivory of an exotic shrub Lantana camara L. - Verbenaceae) in a mixed dry deciduous forest, Anaikatty hills, Western Ghats. The fruited season was recorded during May, June, July, August and September. Eleven species of birds were found to feed on the ripe fruits of L. camara. Majority of the fruit foraging visits were made by bulbuls (3 species) followed by Myna (2 species). Bulbuls and mynas appear to be the predominant seed dispersers of L. camara

Keywords: Lantana camara, phenology, avian frugivory, Western Ghats, Tamilnadu, India

1. Introduction
Avian frugivores are considered the most important seed dispersers in most ecosystems, as assessed by the numbers of successful propagules disseminated (Herrera 1995 [14], Stiles 2000) [25]. Fruit-eating birds play a critical role in the functioning of tropical ecosystems and may assist in the natural regeneration of rain forests by dispersing seeds into cleared areas (Da Silva et al. 1996, Nepstad et al. 1996, Holl et al. 2000) [19, 9] [19] [15]. Birds are recognized as the main dispersal agent of many invasive plant species (Dean & Milton, 2000; Stansbury, 2001) [11]. Invasive plants are an increasingly significant conservation and economic problem worldwide. Although there are numerous examples of detrimental effects of plant invasions on ecosystem functions and individual species (Vitousek et al. 1996), there are also cases where invasive plants now perform important ecological functions (Westman 1990, Buckley et al. 2006) [3]. Invasive plant species that have the greatest impact on natural habitats are often trees or shrubs that are shade tolerant, grow rapidly, reproduce early, produce numerous seeds, and have fleshy fruits associated with bird-dispersal (Cronk and Fuller 1995) [8].

Many highly invasive plants are fleshy-fruited and owe their invasiveness largely to mutualisms formed with local dispersers. The energetic benefits gained by frugivores from ingestion of fruits of invasive alien plants remain poorly documented. Complex dispersal patterns of fleshy-fruited invasive plants should be expected, as studies in systems without invasive plants emphasize a variety of frugivorous species consuming fruits from a single plant species (Kitamura et al. 2002) [16].

The loss of indigenous fruiting species allows invasive alien species to penetrate ecosystems. Invasive species are sometimes preferred by frugivores and may therefore compete with native plant species for dispersal agents (Lafleur et al. 2007) [17]. Many habitats now support both introduced fleshy-fruited plants and introduced frugivores creating the potential for non-native species to promote each other’s populations (Richardson et al. 2000) [8, 21]. There are several reasons to be particularly concerned about the addition of non-native species to avian-mediated seed-dispersal systems. Successful plant invasions have been attributed to particular fruit traits that enhance effective seed dispersal, and alien plants that have fruits that are preferred by frugivores are expected to be more invasive (Buckley et al. 2006) [3].

Study area
The major part of the research work was carried out in the tropical mixed dry deciduous forest of the Anaikatty hills of Nilgiri Biosphere Reserve, Western Ghats. This area is situated between 76°39’ to 76°47’E and 11°5’ to 11°31’N. This forest has an undulating terrain 610-
-750 m with seasonal waterways with hilltops and south rising upto 1600msl. This area receives rainfall from both the monsoons but comparatively high during North-east monsoon. The mean annual rainfall of the area was lower than that of the moist deciduous forest zone of the country but was comparable to that of the mixed dry deciduous forest zone (Champion and Seth 1968) [5]. The forest is dominated by trees such as *Acacia leucophloea*, *Ziziphus mauritiana*, *Chloroxylon swietenia* *Albizia amara* etc. The area is also rich in wildlife.

Focal study species

Lantana camara

Lantana camara is a low, erect or subscandent shrub that grows upto 2 - 4 meters in height. The leaf is ovate or ovate oblong, arranged in opposite pairs. Flower heads contain 20-40 flowers, usually 2.5 cm across; the colour varies from white, cream or yellow to orange pink, purple and red. The fruit is a greenish blue-black colour, 5-7 mm in diameter, drupaceous, shining, with two nutlets. *Lantana camara*, a native of tropical America is found in 47 countries and has been described as one of the world’s ten worst weeds (Cronk & Fuller 1995) [9]. *Lantana* was introduced to India in 1807 as an ornamental plant at the National Botanical Garden of Calcutta (Thakur et al. 1992). It soon escaped into the wild and has established itself all over the Indian subcontinent, stretching from the sub-montane regions of the outer Himalayas to the southernmost part of India. *Lantana* berries attract frugivorous birds and mammals that help to disperse its seeds widely. The diverse and broad geographic distribution of lantana is a reflection of its wide ecological tolerances. It occurs in diverse habitats and on a variety of soil types. It generally grows best in open unshaded situations such as wastelands, rainforest edges, beachfronts, and forests recovering from fire and logging. Disturbed areas such as beside roads, railway tracks and canals are also favourable for the species (Thaman 1974; Winder and Harley 1983; Thakur et al. 1992, Munir 1996, in Day et al. 2003) [26] [10]. *Lantana* does not invade intact rainforests, but is found on its margins (Diatloff 1975; Humphries and Stanton 1992, in Day et al. 2003) [10]. Where wet sclerophyll forests and rainforests have been disturbed through logging, gaps are created; this allows lantana to encroach on the forests. Further logging aggravates the condition and allows the lantana to spread or become thicker (Waterhouse 1970, in Day et al. 2003) [10].

Methodology

Phenology

A total of 5 individuals were marked with aluminum tags and observed for phenology (Table 1). The phenology of fruit production was observed twice in a month to assess the periodicity of fruiting. During the observation, percentage fruiting was noted for each tagged individual. Phenological observations were carried out for a continuous period of 1 year in the mixed dry deciduous forest, Anaikatty.

Foraging Observations

Foraging observations were made by extended bird feeding watches on fruit-bearing plants. Individual Lantana clumps were selected for extended feeding watches. Observations were made between 6.00 and 9.00 hours on the bird visitation to the focal tree, with the help of binoculars. The visit by each individual bird followed by pecking/swallowing of fruits was considered as a fruit-feeding visit by a bird. Three individuals were observed for 12 hours each, totaling 36 hours of observation. Colours of ripe fruits for plant species were assigned to one of eight broad colour categories as used by Wheelwright and Janson (1985) [20]. Diameter of the fruits were measured by using a vernier caliper.

Results

Fruiting phenology: *Lantana camara* bore fruits during May, June, July, August and September. The fruiting peak was noticed in July with all the 5 tagged individuals in fruiting.

![Fig 1: Fruiting phenology of Lantana camara in Anaikatty](image)

Avian frugivory on *Lantana camara*

Thirty six hours of observation was made on *L. camara*. A total of 285 feeding visits were made by birds. Eleven species of birds were found to feed on the ripe fruits of this species (Table 1). This included 3 species bulbul, 2 mynas, 2 babblers, Asian Koel, Common Iora, Small Green-billed Malkoha and Blyth’s reed Warbler. The majority of the fruit foraging visits was made by bulbul followed by Mynas. White-headed Babbler, Asian Koel and Small green-billed Malkoha constituted other avian visitors to *Streblus asper*. Bulbuls were the most frequent visitors (58%), followed by mynas (25%), babbler (10%) (Figure 1). Red-vented Bulbul made maximum number of visits (26%), followed by Common Myna (22%) and Red-whiskered Bulbul (16%) (Table 1).

![Fig 2: Avian frugivory on exotic Lantana camara](image)
Mean number of visits of birds were highest for *F. benghalensis* (124.67 ± SE 13.69), than other thirty one plant species, and the mean number of visits of birds differed significantly between the tree species (*F* _{31, 64} = 22.653, *P* < .000). The second plant species that attracted avian frugivores in terms of mean number of visits is *Lantana camara* (95.00± SE 10.01) in the study area.

Discussion

Bulbuls formed the dominant frugivores of *Lantana camara*. Mean number of visits of birds to plants shows that *Lantana camara* supported large number of avian frugivores than the *Ficus* species. This clearly shows the importance of *Lantana camara* for the avian frugivores in the tropical mixed dry deciduous forest. Ten percent of *Lantana camara* fruits were fed by Red-vented Bulbul in Haridwar (Bhatt & Kumar 2001) [2]. *Lantana camara* constituted one of the preferred food plant species for Grey headed bulbul in the Silent valley National Park and Muthikkalam Reserve forests, Western Ghats, India (Vijayan and Balakrishnan 2005). According to Aravind et al. (2010), *Lantana* fruits are fleshy and available year-round, making them an ideal food source for frugivores such as bulbuls, who are one of the main dispersers Thirteen species of avian frugivores fed on *Lantana camara* fruits in Hong Kong shrubland (Corlett 1998) [6], while five species were reported to feed in urban Hong Kong (Corlett 2005) [7]. In continental areas, many indigenous bird species feed on the *Lantana* fruits, while on some of the island groups, seed dispersal have been mainly facilitated by the introduction of exotic bird species. By feeding on exotic species such as *Lantana*, birds may increase the density and distribution of the weed at the expense of native vegetation thereby displacing other bird species (Day et al. 2003) [10]. A study made in the Society Archipelago (French Polynesia) shows that bulbuls, Silver eye and Fruit doves fed on *Lantana camara* fruits. Lantana fruits were available throughout the year in this study and the same is also seen in Hong Kong, south China, (Corlett 2005) [7] and South Africa (Graaff 1987) [13].

Reference

