Effects of the bioactive amino acids leucine and tryptophan on feed intake in layer chicks

Ajao Kehinde, Idris Muyideen and Gbolagade Monsurat

DOI: https://doi.org/10.22271/23940522.2022.v9.i6a.937

Abstract

Controlling feed intake is essential to providing ideal nutrition and helping poultry reach their maximum potential for growth and development. The current research looked at how L-leucine and L-tryptophan affected layer chicks’ meal intake. Leucine and tryptophan were administered intracerebroventriculatly (ICV) to 4-day-old layer chicks, and feed intake was monitored at different time intervals. Our findings demonstrated that L-leucine administration by ICV enhanced feed intake up to two hours after treatment (P < 0.05). On the other hand, L-tryptophan (10 or 100 g) had no discernible impact on feed consumption. These results showed that L-leucine may impact appetite inside the hypothalamus and that orexigenic and anorexigenic Neuropeptide genes may be directly involved in these effects.

Keywords: L-leucine, L-tryptophan, intracerebroventricular (ICV), layer chicks, feed consumption

1. Introduction

Maintaining pullet health, laying hen quality egg output, and layer body development all depend heavily on nutrition (Wang et al., 2017) [43]. The nutrients or elements of animal food known as nutraceuticals have nutritional and pharmacological significance by protecting against different illnesses, having immunomodulatory potential, promoting good health, and thus boosting productivity (Dhama et al., 2015; Aronson, 2019; Helal et al., 2012; Waheed Janabi et al., 2020) [47, 3, 25, 41]. Amino acids, minerals, vitamins, fatty acids, enzymes, prebiotics, probiotics, symbiotics, pigments, medicinal herbs, herbal extracts, antioxidants, organic acids, flavouring agents, and other nutrients and non-nutrients are included in them (Narahari, 2014; Alagawany et al., 2018a; Elgeddawy et al., 2020) [33, 2, 48]. Due to the nutritional and physiological benefits of feed components as well as the negative consequences of chemical medicines, such as antibiotic resistance and drug residues, nutraceuticals have lately gained attention in poultry research (Elness et al., 2019a, 2020) [18]. Nutraceuticals may include vitamins, minerals, or a combination of them. They are often found in chicken rations (Ghoreyshi et al., 2019, Khatun et al., 2019, and Ahmad et al., 2019) [21, 27, 1], which are particularly significant in poultry nutrition. However, several important necessary amino acids (lysine, methionine, threonine, and tryptophan), vitamins, and minerals are often provided as synthetic supplements. Generally, poultry acquires nutrition from ingesting natural feedstuffs (Ravindran, 2021) [36]. Compared to traditional forms, refined dietary nutraceutical elements may improve digestion, absorption, utilisation, metabolism, and positive health impacts. To enhance bird production efficiency, numerous aspects should be considered, including the bird’s genetic potential, environmental circumstances, food quality, and gastrointestinal health. These parameters include poultry’s nutraceutical value and conversion efficiency (Rinttila & Apajalahhti, 2018; Sugiharto, 2016; Yadav et al., 2019) [37, 39, 45]. This study aims to offer updates on the possible function of amino acids as bioactive compounds that will increase the productivity of layer chicks, safeguard the health and immunity of birds, and help with a variety of public health concerns.

1.1 Amino acids

Functional and structural components of protein and amino acids are divided into two categories by the food industry: non-essential (produced by the body) and essential amino acids (cannot be synthesised rapidly enough to meet the metabolic requirement). Amino acids are essential to the body’s physiological processes (Bortoluzzi et al., 2018; Debnath et al.,...
After absorption, amino acids are put together and converted into proteins, which are then utilised to construct various bodily tissues. According to studies, feeding pullets a high-protein, high-energy diet throughout their development and egg-laying phases favoured egg mass and yolk weight (Babiker et al., 2020) [5]. Different recommendations for the amounts of Necessary amino acids generate issues for the poultry industry because of these discrepancies. The use of synthetic amino acids in chicken feed has been well studied. The cautious use of synthetic amino acids may improve the overall amino acid balance and reduce the amount of crude protein in chickens' diets (Waldroup et al., 2018) [42].

1.2 The role of amino acids in the immune system
Birds’ immune systems directly affect their health, and birds with healthy immune systems develop more quickly. The majority of necessary amino acids are thought to be vital nutrients for cytokine synthesis and immunological performance (Kidd, 2019; Li et al., 2017) [28, 31]. As a result, immunological stress or inflammation is likely to increase the need for critical amino acids (Le Floch et al., 2019) [49]. Additionally, amino acids are linked to the animal synthesis of antibodies (Han & Lee, 2018) [49]. In all species, proper immunocompetence and host defence against various illnesses depend on the intake of dietary amino acids (Becki et al., 2021) [6]. Therefore, if chickens consume enough amino acids in their diets, the development of immune function will be encouraged. According to research, birds perform better and have a stronger immune system when their food contains more threonine and methionine (Yaqoob & Ali, 2018) [146]. Immunoglobulins include threonine, which functions as a proteinogenic amino acid. Increased threonine intake may boost the development of immune cells, encourage the production of antibodies, and lessen the immunological stress brought on by the Newcastle disease (ND) virus or Escherichia coli challenge (Azzam El-Gogary, 2015; Trevisi et al., 2018) [4, 40]. Additionally, according to Bhanja et al. (2016), layers fed a diet containing 1.02% threonine had 17% greater bursa weight, 7% greater thymus weight, and 16% greater spleen weight compared to layers fed a control diet containing 0.96% of threonine. Tryptophan, used as a supplement due to its requirement for protein synthesis, also functions as a precursor of serotonin, a neurotransmitter.

1.3 Amino acid absorption and transportation
Amino acids and peptides are absorbed in the epithelial cell's brush edge. Enterocytes take in amino acids as free amino acids, dipeptides, and tripeptides. The jejunum and ileum are the body parts where amino acid and peptide absorption happens most quickly. Transport is carried out by peptide and amino acid transporters found on the membrane of enterocytes. There are three main transporter systems, according to Broer (2018) [9], the neutral system, the basic system, and the acidic system.

1.4 Leucine
Leucine, an essential amino acid, probably serves as a physiological indicator of the availability of amino acids in the hypothalamus (Blouet et al, 2019) [8]. It is the most powerful stimulator of the mammalian amino-acid-sensitive mTORC1 pathway and reaches the brain more rapidly than other amino acids (Blouet et al., 2019; Proud, 2019) [8]. By boosting hypothalamic mTOR signalling, leucine intracerebroventricular (ICV) injection decreased animal food intake (Cota et al., 2016) [12]. Additionally, it was shown that feeding pigs a diet low in valine but high in leucine caused a rapid decline in feed consumption (Gluague et al., 2021) [22]. On the other hand, leucine greatly increased food intake in newborn chicks when it was given centrally (Izumi et al., 2019) [20]. Leucine was injected intravenously, although the impact on hypothalamic orexigenic and anorexigenic Neuropeptide was still unclear.

1.5 Tryptophan
In laying hens, tryptophan is an important amino acid for protein synthesis and several other metabolic functions. Although necessary, it is still being determined from the literature whether trp is the third or fourth limiting amino acid for laying hens. There has been little investigation on the trp requirement in laying hens (Ishibashi, 2020; Peganova & Eder, 2021) [25, 34]. As a crucial necessary amino acid, trp contributes to the synthesis of body proteins and the generation of protein to assist the formation of eggs (Wu, 2019) [1]. TRP participates in several metabolic activities in addition to protein synthesis. Dietary Trp is linked to mood, stress response, sleep, and appetite management since it is a precursor to serotonin, a crucial neuromediator (Le Floch & Seve, 2017) [50]. Tryptophan is also involved in the metabolism of nicotinamide adenine dinucleotide (NAD+), niacin, and picolinic acid via the Kynurenine pathway. Reduced appetite and feed intake were the major effects of tryptophan deprivation on animal development (Eder et al., 2019; Le Floch & Seve, 2017) [50, 29]. In contrast to central administration, which had been demonstrated to reduce food intake in free-fed chicks, dietary tryptophan dramatically increased body weight growth and feed consumption in chicken (Emadi et al., 2021) [20]. (Bungo et al., 2018) [10]. However, the effects of tryptophan central injection on hypothalamic orexigenic and anorexigenic Neuropeptide in layer chicks have yet to receive much study attention.

2. Materials and Methods
2.1 Experimental animals
Layer chicks aged one day were bought from a hatchery and kept in a room with a constant temperature of 30 1 °C. Every day, lighting was delivered nonstop for 24 hours. Free access to water and a commercial beginning feed was provided for the chicks. The chicks (3-d old) were chosen and divided into 12 experimental groups based on their body weight and average feed intake 1 day before the experimental day, ensuring that the average body weight was as uniform as feasible within the same experimental group.

2.2 Preparation of drugs
L-leucine and L-tryptophan were then dissolved in 0.85% saline, including 0.1% Evans Blue solution to aid injection site localisation, for a total injection volume of 5 L. We chose two dosages of each amino acid (0.15 or 1.5 mol for L-leucine and 10 or 100 g for L-tryptophan) based on similar/other tests conducted on chicks by other researchers (Izumi et al., 2019; Bungo et al., 2018; Suenaga et al., 2018) [26, 38, 10].

2.3 Intra-cerebroventricular (ICV) injection procedure
The technique used to inject the chicks was modified by Davis et al. (2019) [13] and Cline et al. (2018) [11]. After data collection, the chick’s skull was sectioned along the frontal plane to locate the injection location. The lateral ventricles system of any chicken lacking dye was removed before the examination. Feeding intake studies 144 4-day-old layer chicks were given L-leucine (0.15 mol or 1.5 mol in vehicle), L-glutamate (0.86 mol or 1.6 mol in vehicle), L-tryptophan (10 mol or 100 mol in vehicle), L-arginine (20 mol or 200 mol), or vehicle control (0.85% saline containing 0.1% Evans
Blue in the volume of 5 L) by ICV administration. The chicks were given an injection and then placed back in their separate cages with free access to food and water. After administration, feed intake was observed at the following intervals: 0.25, 0.5, 1, 1.5, and 2 hours. We weighed the remaining diet at different time points (0.25, 0.5, 1, 1.5, and 2 h) so that we could calculate the cumulative feed intake of various time points after giving chicks a specific amount of diet in a cup at the start of the experiment (0 h).

3. Results and Discussion

1. Results ICV injection of leucine increased feed intake
Leucine injections of 0.15 mol and 1.5 mol were given to see how they affected the animals' meal consumption. As seen in Figure 1, the 0.15 mol group's feed intake increased significantly (P < 0.05) at 0.5, 1, 1.5, and 2 h after injection. In comparison, the 1.5 mol group's feed intake increased significantly (P = 0.052) at 1 and 2 h after ICV injection. At 1.5 h after injection, feed intake was very close to a significant increase (P = 0.052). The 1.5 mol feed intake rose 0.5 h after injection; however, this rise was not statistically significant. As a result, leucine at both doses had a noticeable stimulatory impact on feed intake, with 0.15 mol having a substantially stronger effect up to 2 h after injection.

<table>
<thead>
<tr>
<th>Leucine</th>
<th>At 0.25h Feed Intake (g)</th>
<th>Leucine</th>
<th>At 0.5h Feed Intake (g)</th>
<th>Leucine</th>
<th>At 1h Feed Intake (g)</th>
<th>Leucine</th>
<th>At 1.5h Feed Intake (g)</th>
<th>Leucine</th>
<th>At 2h Feed Intake (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.0</td>
<td>C</td>
<td>1.25</td>
<td>C</td>
<td>1.50</td>
<td>C</td>
<td>1.75</td>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>0.15µmol</td>
<td>1.5</td>
<td>0.15µmol</td>
<td>1.75</td>
<td>0.15µmol</td>
<td>2.0</td>
<td>0.15µmol</td>
<td>2.25</td>
<td>0.15µmol</td>
<td>2.50</td>
</tr>
<tr>
<td>1.5 µmol</td>
<td>1.25</td>
<td>1.5 µmol</td>
<td>1.50</td>
<td>1.5 µmol</td>
<td>1.75</td>
<td>1.5 µmol</td>
<td>2.00</td>
<td>1.5 µmol</td>
<td>2.25</td>
</tr>
</tbody>
</table>

![Fig 1: ICV injection of leucine increased feed intake](image1)

2. Tryptophan ICV injection had no significant effect on food intake in layer chicks
To determine how tryptophan ICV injection affected layer chick feed intake, 10 and 100 g of L-tryptophan were given. Even at a greater dosage (100 g), there was no discernible change in feed intake compared to the control group. Compared to the control, the 10 g L-tryptophan dosage slightly decreased feed intake at 0.25 h, 1 h, and 1.5 h post-injection (P = 0.189, 0.224, and 0.270, respectively) over the 2-hour post-injection period. The small feed intake decrease was uniform and constant even though it was not large. Figure 2 displays the findings in summary.

<table>
<thead>
<tr>
<th>Tryptophan</th>
<th>At 0.25h Feed Intake (g)</th>
<th>Tryptophan</th>
<th>At 0.5h Feed Intake (g)</th>
<th>Tryptophan</th>
<th>At 1h Feed Intake (g)</th>
<th>Tryptophan</th>
<th>At 1.5h Feed Intake (g)</th>
<th>Tryptophan</th>
<th>At 2h Feed Intake (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.6</td>
<td>C</td>
<td>1.8</td>
<td>C</td>
<td>2.0</td>
<td>C</td>
<td>2.2</td>
<td>C</td>
<td>2.4</td>
</tr>
<tr>
<td>10 µg</td>
<td>1.5</td>
<td>0.15µmol</td>
<td>1.7</td>
<td>0.15µmol</td>
<td>1.9</td>
<td>0.15µmol</td>
<td>2.1</td>
<td>0.15µmol</td>
<td>2.2</td>
</tr>
<tr>
<td>100 µg</td>
<td>1.6</td>
<td>1.5 µmol</td>
<td>1.8</td>
<td>1.5 µmol</td>
<td>2.0</td>
<td>1.5 µmol</td>
<td>2.2</td>
<td>1.5 µmol</td>
<td>2.3</td>
</tr>
</tbody>
</table>

![Fig 2: Food intake in layer chicks was unaffected significantly by tryptophan ICV injection](image2)
4. Discussion

The key finding from the current data was that leucine injection by activating a hypothalamus-brainstem circuit, according to Blouet C, Jo YH, Li X, and Schwartz GJ. J Neurosci. 2019;29;8302-8311.


11. Amlyn exerts anorexigenic effects in chickens through the hypothalamus and brain stem, according to Cline MA, Nandar W, Smith ML, Pittman BH, Kelly M, and Rogers JO. Regulation September. 2018;146:140-146.


26. Leucine, but not isoleucine or valine, is centrally administered by Izumi, Kawamura, Ueda, and Bungo to enhance eating behaviour in newborn chicks. in Neurosci Letts. 2019:354:166-168.
28. MT Kidd, CD McDaniel, SL Branton, ER Miller, BB Boren, and BI Fancher. Commercial layers perform better with a diet lower in arginine and high in tryptophan and histidine but with an abundance of leucine causes a quick drop in feed intake and changes the postprandial plasma amino acid and alpha-keto acid concentrations in pigs, according to: c2021.
35. Peganova S, Eder K. Variable sources of isoleucine, valine, leucine, and tryptophan interact with one another to affect the performance of laying hens. DOI: Poultry Science. 2021;82:100-105. 10.1093/ps/82.1.100